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more generally, what is its kernel C (Γ)? Here X̂ denotes the 
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In this paper we first give two new short proofs of two known 
results (for Γ = F2 and Φ2) and a new result for Γ = Φ3:

(1) C (F2) = {e} when F2 is the free group on two generators.
(2) C (Φ2) = F̂ω when Φn is the free metabelian group on 

n generators, and F̂ω is the free profinite group on ℵ0
generators.

(3) C (Φ3) contains F̂ω.

Results (2) and (3) should be contrasted with an upcoming 
result of the first author showing that C (Φn) is abelian for 
n ≥ 4.
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1. Introduction

The classical congruence subgroup problem (CSP) asks for, say, G = SLn (Z) or 
G = GLn (Z), whether every finite index subgroup of G contains a principal congruence 
subgroup, i.e. a subgroup of the form G (m) = ker (G → GLn (Z/mZ)) for some 0 �=
m ∈ Z. Equivalently, it asks whether the natural map Ĝ → GLn(Ẑ) is injective, where 
Ĝ and Ẑ are the profinite completions of the group G and the ring Z, respectively. More 
generally, the CSP asks what is the kernel of this map. It is a classical 19th century result 
that the answer is negative for n = 2. Moreover (but not so classical, cf. [20,15]), the 
kernel, in this case, is F̂ω – the free profinite group on a countable number of generators. 
On the other hand, for n ≥ 3, the map is injective and the kernel is therefore trivial.

The CSP can be generalized as follows: Let Γ be a group and M a finite index 
characteristic subgroup of it. Denote:

G (M) = ker (Aut (Γ) → Aut (Γ/M)) .

Such a finite index normal subgroup of G = Aut (Γ) will be called a “principal congruence 
subgroup” and a finite index subgroup of G which contains such a G (M) for some M
will be called a “congruence subgroup”. Now, the CSP for Γ asks whether every finite 
index subgroup of G is a congruence subgroup. When Γ is finitely generated, Aut(Γ̂)
is profinite and the CSP is equivalent to the question (cf. [8], §1 and §3): Is the map 

Ĝ = Âut (Γ) → Aut(Γ̂) injective? More generally, it asks what is the kernel C (Γ) of this 
map.

As GLn (Z) = Aut (Zn), the classical congruence subgroup results mentioned above 
can therefore be reformulated as C (A2) = F̂ω while C (An) = {e} for n ≥ 3, when 
An = Zn is the free abelian group on n generators.

Very few results are known when Γ is non-abelian. A very surprising result was proved 
in [2] by Asada by methods of algebraic geometry:

Theorem 1.1. C (F2) = {e}, i.e., the free group on two generators has the congruence 

subgroup property, namely ̂Aut (F2) → Aut(F̂2) is injective.

A purely group theoretic proof for this theorem was given by Bux–Ershov–Rapinchuk 
[8]. Our first goal in this paper is to give an easier and more direct proof of Theorem 1.1, 
which also give a better quantitative estimate: we give an explicitly constructed congru-
ence subgroup G (M) of Aut (F2) which is contained in a given finite index subgroup H
of Aut (F2) of index n. Our estimates on the index of M in F2 as a function of n are 
substantially better than those of [8] – see Theorems 2.7 and 2.9.

We then turn to Γ = Φ2, the free metabelian group on two generators. The initial 
treatment of Φ2 is similar to F2, but quite surprisingly, the first named author showed 
in [4] a negative answer, i.e. C (Φ2) �= {e}. We also give a shorter proof of this result, 
deducing that:
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Theorem 1.2. C (Φ2) = F̂ω.

We then go ahead from 2 to 3 and prove:

Theorem 1.3. C (Φ3) contains a copy of F̂ω. In particular, the congruence subgroup prop-
erty (strongly) fails for Φ3.

This is also surprising, especially if compared with an upcoming paper of the first 
author [5] showing that C (Φn) is abelian for n ≥ 4. So, while the dichotomy for the 
abelian case An = Zn is between n = 2 and n ≥ 3, for the metabelian case, it is between 
n = 2, 3 and n ≥ 4.

A main ingredient of the proof of Theorem 1.3 is showing that Aut (Φ3) is large, i.e. 
it has a finite index subgroup which is mapped onto a non-abelian free group. For this 
we use the method developed by Grunewald and the second author in [13] to produce 
arithmetic quotients of Aut (Fn). In particular, it is shown there that Aut (F3) is large. 
Our starting point to prove Theorem 1.3 is the observation that the same proof shows 
also that Aut (Φ3) is large.

In our proof of Theorem 1.2, the largeness of Aut (Φ2) is also playing a crucial role. 
But, a word of warning is needed here: largeness of Aut (Γ) by itself is not sufficient 
to deduce negative answer for the CSP for Γ. For example, Aut (F2) is large but has 
an affirmative answer for the CSP. At the same time, as mentioned above, Aut (F3) is 
large and we do not know whether F3 has the congruence subgroup property or not. 
To prove Theorem 1.3 we use the largeness of Aut (Φ3) combined with the fact that 
every non-abelian finite simple group which is involved in Aut(Φ̂3) is already involved 
in GL3 (R) for some finite commutative ring R, as we will show below.

The paper is organized as follows: In §2 we give a short proof for Theorem 1.1 and 
in §3 for Theorem 1.2. Section 4 is devoted to the proof of Theorem 1.3. We close in §5
with some remarks and open problems, about free nilpotent and solvable groups.

2. The CSP for F2

Before we start, let us quote some general propositions which Bux–Ershov–Rapinchuk 
bring throughout their paper.

Proposition 2.1. (cf. [8], Lemma 2.1) Let:

1 → G1
α→ G2

β→ G3 → 1

be an exact sequence of groups. Assume that G1 is finitely generated and that the center 
of its profinite completion Ĝ1 is trivial. Then, the sequence of the profinite completions

1 → Ĝ1
α̂→ Ĝ2

β̂→ Ĝ3 → 1

is also exact.
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Proposition 2.2. (cf. [8], Corollaries 2.3, 2.4. and 2.7) Let F be the free group on the set 
X, |X| ≥ 2. Then:

1. The center of F̂ , the profinite completion of F , is trivial.
2. If x, y ∈ X, x �= y, then the centralizer of [y, x] in F̂ is ZF̂ ([y, x]) = 〈[y, x]〉, the 

closure of the cyclic group generated by [y, x].

We start now with the following lemma whose easy proof is left to the reader:

Lemma 2.3. Let H ≤ G = Aut (Γ) be a congruence subgroup. Then:

ker(Ĝ → Aut(Γ̂)) = ker(Ĥ → Aut(Γ̂)).

In particular, the map Ĝ → Aut(Γ̂) is injective if and only if the map Ĥ → Aut(Γ̂) is 
injective.

Denote now F2 = 〈x, y〉 = the free group on x and y. It is a well known theorem of 
Nielsen (cf. [21], 3.5) that the kernel of the natural surjective map:

Aut (F2) → Aut (F2/F
′
2) = Aut

(
Z2) = GL2 (Z)

is Inn (F2), the inner automorphism group of F2. It is also well known that the 

group 

〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
∼= F2 is free on two generators and of finite index in 

GL2 (Z) which contains ker (GL2 (Z) → GL2 (Z/4Z)). Now, if we denote the preimage of 〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
under the map Aut (F2) → GL2 (Z) by Aut′ (F2), then Aut′ (F2)

is of finite index in Aut (F2) and contains the principal congruence subgroup:

ker
(
Aut (F2) → GL2 (Z) → GL2 (Z/4Z) = Aut

(
F2/

(
F 4

2F
′
2
)))

.

So, by Lemma 2.3 it is enough to prove that ̂Aut′ (F2) → Aut(F̂2) is injective.
Now, by the description above, we deduce the exact sequence:

1 → Inn (F2) → Aut′ (F2) →
〈(

1 2
0 1

)
,

(
1 0
2 1

)〉
→ 1.

As 
〈(

1 2
0 1

)
,

(
1 0
2 1

)〉
is free, this sequence splits by the map:

(
1 2
0 1

)

→ α =

{
x 
→ x

y 
→ yx2
,

(
1 0
2 1

)

→ β =

{
x 
→ xy2

y 
→ y
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and thus: Aut′ (F2) = Inn (F2)�〈α, β〉. By Propositions 2.1 and 2.2, the exact sequence: 
1 → Inn (F2) → Aut′ (F2) → 〈α, β〉 → 1 yields the exact sequence:

1 → ̂Inn (F2) → ̂Aut′ (F2) → 〈̂α, β〉 → 1

which gives:

̂Aut′ (F2) = ̂Inn (F2) � 〈̂α, β〉.

Thus, all we need to show is that the following map is injective:

̂Inn (F2) � 〈̂α, β〉 → Aut(F̂2).

We will prove this, in three parts: The first part is that the map ̂Inn (F2) → Aut(F̂2) is 
injective, but this is obvious as ̂Inn (F2) ∼= F̂2 is mapped isomorphically to Inn(F̂2) ∼= F̂2. 
The second part is to show that the map ρ : 〈̂α, β〉 → Aut(F̂2) is injective, and the last 
part is to show that the intersection of the images of ̂Inn (F2) and 〈̂α, β〉 in Aut(F̂2) is 
trivial, i.e. Inn(F̂2) ∩ Imρ = {e}.

So it remains to prove the next two lemmas, Lemma 2.4 and Lemma 2.6:

Lemma 2.4. The map 〈̂α, β〉 → Aut(F̂2) is injective.

Before proving the lemma, we recall a classical result of Schreier:

Theorem 2.5. (cf. [21], 2.3 and 2.4) Let F be the free group on the set X where |X| = n, 
and Δ a subgroup of F of index m. Let T be a right Schreier transversal of Δ (i.e. 
a system of representatives of right cosets containing the identity, such that the initial 
segment of any element of T is also in T ). Then:

1. Δ is a free group on m · (n− 1) + 1 elements.
2. The set 

{
tx
(
tx
)−1 �= e | t ∈ T, x ∈ X

}
is a free generating set for Δ, where for 

every g ∈ F we denote by ḡ the unique element in T satisfying Δg = Δḡ.

Proof of Lemma 2.4. Define Δ = ker(F2 → (Z/2Z)2). This is a characteristic subgroup 
of index 4 in F2, that by the first part of Theorem 2.5, is isomorphic to F5. We also have: 
Δ̂ = ker(F̂2 → (Z/2Z)2), and therefore, there is a natural homomorphism: Aut(F̂2) →
Aut(Δ̂) ∼= Aut(F̂5) which induces the composition 〈̂α, β〉 → Aut(F̂2) → Aut(Δ̂). Thus, 
it is enough to show that the composition map 〈̂α, β〉 → Aut(Δ̂) is injective.

Now, let X = {x, y} and T = {1, x, y, xy} be a right Schreier transversal of Δ. By 
applying the second part of Theorem 2.5 for X and T , we get the following set of free 
generators for Δ:

e1 = x2, e2 = yxy−1x−1, e3 = y2, e4 = xyxy−1, e5 = xy2x−1.
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Hence, the automorphisms α and β act on Δ in the following way:

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e1 = x2 
→ x2 = e1

e2 = yxy−1x−1 
→ yxy−1x−1 = e2

e3 = y2 
→ yx2yx2 = e2e4e3e1

e4 = xyxy−1 
→ xyxy−1 = e4

e5 = xy2x−1 
→ xyx2yx = e4e2e5e1

β =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e1 = x2 
→ xy2xy2 = e5e1e3

e2 = yxy−1x−1 
→ yxy−1x−1 = e2

e3 = y2 
→ y2 = e3

e4 = xyxy−1 
→ xy3xy = e5e4e3

e5 = xy2x−1 
→ xy2x−1 = e5

Let us now define the map π : Δ → 〈α, β〉 ∼= F2 (yes! these are the same α and β) by 
the following way:

π =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e1 
→ α

e2 
→ 1
e3 
→ β

e4 
→ α−1

e5 
→ β−1

It is easy to see that N = kerπ is the normal subgroup of Δ generated as a nor-
mal subgroup by e2, e1e4 and e3e5, and that N is invariant under the action of the 
automorphisms α and β, since:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α (e2) = e2 ∈ N

α (e1e4) = e1e4 ∈ N

α (e3e5) = e2e4e3e1e4e2e5e1

= e4
((
e−1
4 e2e4

) (
e3 ((e1e4) e2) e−1

3
)
(e3e5) (e1e4)

)
e−1
4 ∈ N⎧⎪⎪⎨⎪⎪⎩

β (e2) = e2 ∈ N

β (e1e4) = e5e1e3e5e4e3 = e5
((
e1 (e3e5) e−1

1
)
(e1e4) (e3e5)

)
e−1
5 ∈ N

β (e3e5) = e3e5 ∈ N

Therefore, the homomorphism 〈̂α, β〉 → Aut(Δ̂) induces a homomorphism: 〈̂α, β〉 →
Aut(〈̂α, β〉), and thus it is enough to show that the last map is injective. Now, under 
this map, α and β act on 〈α, β〉 in the following way:
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α =
{
α = e1N 
→ α (e1N) = α (e1)N = e1N = α

β = e3N 
→ α (e3N) = α (e3)N = e2e4e3e1N = α−1βα

β =
{
α = e1N 
→ β (e1N) = β (e1)N = e5e1e3N = β−1αβ

β = e3N 
→ β (e3N) = β (e3)N = e3N = β

Namely, α and β act via π on 〈̂α, β〉 by the inner automorphisms α and β and 

hence 〈̂α, β〉 is mapped isomorphically to Inn(〈̂α, β〉), yielding that the map 〈̂α, β〉 →
Aut(〈̂α, β〉) is injective and 〈̂α, β〉 → Aut(F̂2) is injective as well, as required. �
Lemma 2.6. Inn(F̂2) ∩ Imρ = {e}, where ρ : 〈̂α, β〉 → Aut(F̂2) is the map defined above.

Proof. First we observe that α and β fix e2 = [y, x]. Thus, by the second part of Propo-
sition 2.2, we have:

Inn(F̂2) ∩ Imρ ⊆ ZInn(F̂2) (Inn ([y, x])) = 〈Inn ([y, x])〉 = 〈Inn (e2)〉.

Now, as e2 ∈ kerπ, where π is as defined in the proof of Lemma 2.4, the image of 
〈Inn (e2)〉 in Inn(〈̂α, β〉) is trivial. Thus, the image of Inn(F̂2) ∩ Imρ in Inn(〈̂α, β〉) is 
trivial, and isomorphic to Inn(F̂2) ∩ Imρ as we saw that Imρ is mapped isomorphically 

to Inn(〈̂α, β〉). So Inn(F̂2) ∩ Imρ is trivial. �
This finishes the proof of Theorem 1.1. In [8], the authors give an explicit construction 

of a congruence subgroup which is contained in a given finite index subgroup of Aut(F̂2). 
They prove the following theorem:

Theorem 2.7. (cf. [8], Theorem 5.1) Let H be a finite index normal subgroup of G =
Aut (F2) such that Inn (F2) ≤ H ≤ Aut′ (F2) and let n = [Aut′ (F2) : H]. Pick two 
distinct odd primes p, q � n, and set m = n · pn+1. Then, there exists an explicitly 
constructed normal subgroup M � F2 of index dividing 144 · m4 · q36·m4+1 such that 
G (M) ≤ H, when for a general normal subgroup M � F2 we define:

G (M) = {σ ∈ G |σ (M) = M, σ acts trivially on F2/M} .

We end this section with a much simpler explicit construction of a congruence sub-
group and with a better bound for the index of M . But before, let us recall the “discrete 
version” of Proposition 2.2 from [8]:

Proposition 2.8. (cf. [8], Propositions 2.2 and 2.6) Let F be the free group on the set X, 
|X| ≥ 2, and let F/N be a finite quotient of F . Pick a prime p not dividing the order of 
F/N and set M = NpN ′. Then:

1. The image of every normal abelian subgroup of F/M through the natural projection 
F/M → F/N , is trivial.
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2. If N ⊆ F ′
2F

6
2 , x, y ∈ X, x �= y, then the image of the centralizer ZF/M ([y, x] ·M)

through the natural projection F/M → F/N , is 〈[y, x] ·N〉.

Theorem 2.9. Let H be a finite index normal subgroup of G = Aut (F2) such that 
Inn (F2) ≤ H ≤ Aut′ (F2) = Inn (F2) � 〈α, β〉 and let n = [Aut′ (F2) : H]. Then for 
every prime p � 6n, there exists an explicitly constructed normal subgroup M � F2 of 
index dividing 144 · n4 · p36·n4+1 such that G (M) ≤ H.

Proof. Recall the map π : F2 ⊇ Δ → 〈α, β〉 from the proof of Lemma 2.4, and let 
t1 = 1, t2 = x, t3 = y, t4 = xy be the system of representatives of right cosets of Δ in 
F2. Denote also K = H ∩ 〈α, β〉 and define:

N = F ′
2F

6
2
⋂

g∈F2

g−1π−1 (K) g = F ′
2F

6
2

4⋂
i=1

t−1
i π−1 (K) ti

M = F ′
2F

4
2 ∩N ′Np

Then π−1 (K) is a subgroup of index n in Δ and 
⋂4

i=1 t
−1
i π−1 (K) ti is a normal subgroup 

of F2 of index dividing n4 in Δ, and of index dividing 4n4 in F2. So as F ′
2F

6
2 is of index 

9 in Δ, N is a normal subgroup of index dividing 36 · n4 in F2. Thus, by the Schreier 
formula, the index of N ′Np in F2 divides 36 · n4 · p36·n4+1 and the index of M in F2 is 
dividing 4 · 36 · n4 · p36·n4+1. So it remains to show that G (M) ≤ H.

Let σ ∈ G (M). As M ≤ F ′
2F

4
2 we have:

G (M) ≤ ker
(
G → Aut

(
F2/

(
F ′

2F
4
2
)))

≤ Aut′ (F2) = Inn (F2) � 〈α, β〉

and therefore we can write σ = Inn (f)·δ for some f ∈ F2 and δ ∈ 〈α, β〉. By assumption, 
σ acts trivially on F2/M and thus δ acts on F2/M as Inn 

(
f−1). Now, as α and β fix 

[y, x], we deduce that so does δ. Thus, f ·M ∈ ZF2/M ([y, x] ·M) and by Proposition 2.8, 
f ·N ∈ 〈[y, x] ·N〉. Hence, δ acts on the group F2/M as Inn ([y, x]r · n) for some r ∈ Z
and n ∈ N . Therefore, δ acts on Δ/M as Inn (er2 · n) for some r ∈ Z and n ∈ N . So, 
δ acts on π (Δ) /π (M) = Δ/ (M · kerπ) as Inn (π (er2 · n)) for some r ∈ Z and n ∈ N . 
But e2 ∈ kerπ, so δ acts on π (Δ) /π (M) as Inn (π (n)) for some n ∈ N . Now, by the 
definition of N , π (N) ⊆ K and also π (M) ⊆ K ′Kp, so δ acts on π (Δ) /K ′Kp as Inn (k)
for some k ∈ K. Moreover, by the definition of π we have π (Δ) = 〈α, β〉 and by the 
computations we made in the proof of Lemma 2.4, δ acts on 〈α, β〉 as Inn (δ). Thus, 
there exists some k ∈ K such that Inn (δ) · Inn (k)−1 acts trivially on 〈α, β〉 /K ′Kp, i.e. 
δ ·k−1 ∈ Z (〈α, β〉 /K ′Kp). Now, by the first part of Proposition 2.8, as Z (〈α, β〉 /K ′Kp)
is an abelian normal subgroup of 〈α, β〉 /K ′Kp it is mapped trivially to 〈α, β〉 /K. I.e. 
δ · k−1 ∈ K, so also δ ∈ K ⊆ H. Thus, σ = Inn (f) · δ ∈ H, as required. �
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3. The CSP for Φ2

In this section we will prove Theorem 1.2, and will show that the congruence kernel 
of the free metabelian group on two generators is the free profinite group on a countable 
number of generators.

Before we start, let us observe that for a group Γ, one can also ask a parallel congruence 
subgroup problem for G = Out (Γ). I.e. one can ask whether every finite index subgroup 
of G contains a principal congruence subgroup of the form:

G (M) = ker (G → Out (Γ/M))

for some finite index characteristic subgroup M ≤ Γ. When Γ is finitely generated, this 
is equivalent to the question whether the congruence map Ĝ → Out(Γ̂) is injective. 
Moreover, it is easy to see that Lemma 2.3 has a parallel version for G, namely, if H ≤ G

is a congruence subgroup of G, then:

ker(Ĝ → Out(Γ̂)) = ker(Ĥ → Out(Γ̂)).

We start now with the next proposition which is slightly more general than Lemma 
3.1 in [8]. Nevertheless, it is proven by the same arguments:

Proposition 3.1. (cf. [8], Lemma 3.1) Let Γ be a finitely generated residually finite group 

such that Γ̂ has a trivial center. Considering the congruence map Ôut (Γ) → Out(Γ̂), we 
have:

C (Γ) = ker(Âut (Γ) → Aut(Γ̂)) ∼= ker(Ôut (Γ) → Out(Γ̂)).

It is well known that Φ2 is a residually finite group (cf. [4], Theorem 2.11). It is also 
proven there that Z(Φ̂2) is trivial (proposition 2.10). So by the above proposition:

C (Φ2) = ker( ̂Aut (Φ2) → Aut(Φ̂2)) ∼= ker( ̂Out (Φ2) → Out(Φ̂2)).

In addition, it is an old result by Bachmuth [3] that the kernel of the surjective map:

ker
(
Aut (Φ2) → Aut (Φ2/Φ′

2) = Aut
(
Z2) = GL2 (Z)

)
= Inn (Φ2)

i.e., Out (Φ2) ∼= GL2 (Z). Now, the free group 

〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
is a congruence 

subgroup of Out (Φ2) as it contains:

ker
(
Out (Φ2) → Out

(
Φ2/Φ′

2Φ4
2
))

= ker (GL2 (Z) → GL2 (Z/4Z)) .

So by the appropriate version of Lemma 2.3 and by Proposition 3.1, we obtain that:
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C (Φ2) = ker( ̂Out (Φ2) → Out(Φ̂2))

= ker(ĜL2 (Z) → Out(Φ̂2))

= ker

⎛⎝ ̂〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
→ Out(Φ̂2)

⎞⎠ .

Now, as 
〈(

1 2
0 1

)
,

(
1 0
2 1

)〉
is a free group, we can also state that:

C (Φ2) = ker

⎛⎝ ̂〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
→ Out(Φ̂2)

⎞⎠ (3.1)

∼= ker(〈̂α, β〉 → Aut(F̂2) → Aut(Φ̂2) → Out(Φ̂2))

where α and β are the automorphisms of F2 that we defined in the previous section, 

which are preimages of 
(

1 2
0 1

)
and 

(
1 0
2 1

)
under the map Aut (F2) → GL2 (Z), 

respectively. So all we need to show is that:

Lemma 3.2. C (Φ2) = ker(〈̂α, β〉 → Out(Φ̂2)) = F̂ω.

Proof. As the free group 

〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
is a congruence subgroup of the group 

Aut 
(
Z2) = Out 

(
Z2) = GL2 (Z), we have:

C
(
Z2) = ker

⎛⎝ ̂〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
→ Out(Ẑ2)

⎞⎠
= ker(〈̂α, β〉 → Out(Ẑ2))

= ker(〈̂α, β〉 → Aut(Φ̂2) → Out(Φ̂2) → Out(Ẑ2) = Aut(Ẑ2)).

Thus, if we denote: C = ker(〈̂α, β〉 → Aut(Φ̂2)), then using equation (3.1), we have: 
C ≤ C (Φ2) ≤ C

(
Z2). Now, if we consider the action of Φ̂2 on Φ′

2 = ker(Φ̂2 → Ẑ2)
by conjugation, then as Φ′

2 is abelian, we actually obtain an action on Φ′
2 as a 

Z[Φ̂2/Φ′
2] = Z[Ẑ2]-module, which is generated by the element [y, x] as a Z[Ẑ2]-module, 

since 〈x, y | [y, x] = 1〉 is a presentation of Z2. Moreover, as we observed previously, α
and β fix [y, x]. Therefore, C

(
Z2) acts trivially not only on Φ̂2/Φ′

2 = Ẑ2 but also on Φ′
2.
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Let us now make the following observation: if σ, τ are two automorphisms of a group Γ
which act trivially on Γ/M and on M , where M � Γ is abelian, then σ and τ commute. 
Indeed, if g ∈ Γ, then σ (g) = g ·m and τ (g) = g · n for some m, n ∈ M , and thus:

τ (σ (g)) = τ (g ·m) = g · n ·m = g ·m · n = σ (g · n) = σ (τ (g)) .

The conclusion from the above observation and from the previous discussion is that 
C
(
Z2) /C is abelian, and thus, C

(
Z2) /C (Φ2) is also abelian. Finally, C

(
Z2) is known 

to be isomorphic to F̂ω [20,15]. Moreover, by Proposition 1.10 and Corollary 3.9 of [17]
every normal closed subgroup N of F̂ω such that F̂ω/N is abelian, is also isomorphic to 
F̂ω. Thus, C (Φ2) ∼= F̂ω as well, as required. �
Remark 3.3. Our proof of Theorem 1.2 is shorter than the one given in [4], but the latter 
gives more information. We show here that C

(
Z2) /C (Φ2) is abelian, while from [4] one 

can deduce that, in fact, C (Φ2) = C
(
Z2). See §5 for more.

4. The CSP for Φ3

In this section we will prove Theorem 1.3 which claims that C (Φ3) contains a copy 
of F̂ω. Let us start by showing that Aut (Φ3) is large:

Proposition 4.1. The group Aut (Φ3) is large, i.e. it has a finite index subgroup that can 
be mapped onto a non-abelian free group.

Proof. The proof will follow the method developed in [13] to produce arithmetic quo-
tients of Aut (Fn). Denote the free group on 3 generators by F3 = 〈x, y, z〉, and the 

cyclic group of order 2 by C2 = {1, g}. Define the map π : F3 → C2 by: π =
{
x 
→ g

y, z 
→ 1
, 

and denote its kernel by R = kerπ. Then, using the right transversal T = {1, x}, we 
deduce by Theorem 2.5 that R is freely generated by: x2, y, xyx−1, z, xzx−1. Thus, 
R̄ = R/R′ = Z5 is generated as a free abelian group by the images:

v1 = x2, v2 = y, v3 = xyx−1, v4 = z, v5 = xzx−1.

Now, the action of F3 on R by conjugation induces an action of F3/R = C2 = {1, g} on 
R̄ = R/R′, sending:

g 
→

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v1 = x2 
→ x2 = v1

v2 = y 
→ x−2 (xyx−1)x2 = xyx−1 = v3

v3 = xyx−1 
→ y = v2

v4 = z 
→ x−2 (xzx−1)x2 = xzx−1 = v5

v = xzx−1 
→ z̄ = v

=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠ = B.
5 4



182 D.E.-C. Ben-Ezra, A. Lubotzky / Journal of Algebra 500 (2018) 171–192
The above matrix has two eigenvalues λ = ±1 and the eigenspaces are:

V1 = Sp {v1, v2 + v3, v4 + v5}
V−1 = Sp {v2 − v3, v4 − v5} .

Recall, Φ3 = F3/F
′′
3 , and as F3/R is abelian, F3/R

′ is metabelian. Thus, we have a 
surjective homomorphism: Φ3 � F3/R

′. Denote now: S = R/F ′′
3 , so we can identify: 

F3/R ∼= Φ3/S, F3/R
′ ∼= Φ3/S

′ and R̄ = R/R′ ∼= S/S′ = S̄. So as before, Φ3/S = C2
acts on S̄ by the matrix B.

Denote now G (S) = {σ ∈ Aut (Φ3) |σ (S) = S}. It is clear that G (S) is of finite index 
in Aut (Φ3) with a natural map: G (S) → Aut (S) which induces a map: ρ : G (S) →
Aut 

(
S̄
)

= GL5 (Z). We claim now that if σ ∈ G (S) then ρ (σ) commutes with B. First 
observe that there exists some s ∈ S such that σ (x) = sx (x now plays the role of the 
image of x under the map F3 → Φ3). Now, let t ∈ S, and remember that the action of 
B on S̄ is induced by the action of x on S by conjugation. So:

σ
(
x−1tx

)
= σ (x)−1

σ (t)σ (x) =

= x−1s−1σ (t) sx =

=
(
x−1sx

)−1 (
x−1σ (t)x

) (
x−1sx

)
and hence:

(ρ (σ) ·B)
(
t̄
)

= σ (x−1tx) =

= (x−1sx)−1 (x−1σ (t)x) (x−1sx) =

= x−1σ (t)x = (B · ρ (σ))
(
t̄
)
.

Therefore, ρ (G (S)) commutes with B. It follows that the eigenspaces of B are invariant
under the action of G (S). In particular, we deduce that V−1 is invariant under the action 
of ρ (G (S)). Thus, we obtain a homomorphism ν : G (S) → Aut 

(
V−1 ∩ S̄

)
= GL2 (Z).

Consider now the following automorphisms of Aut (Φ3) (x, y, z play the role of the 
images of x, y, z under F3 → Φ3):

α =

⎧⎪⎪⎨⎪⎪⎩
x 
→ x

y 
→ y

z 
→ zy

, β =

⎧⎪⎪⎨⎪⎪⎩
x 
→ x

y 
→ yz

z 
→ z

So α, β ∈ G (S) act on V−1 = Sp {u1 = v2 − v3, u2 = v4 − v5} in the following way:

α (u1) = α
(
y − xyx−1

)
= y − xyx−1 = u1

α (u2) = α
(
z − xzx−1

)
= z + ȳ − xzx−1 − xyx−1 = u2 + u1
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β (u1) = β
(
y − xyx−1

)
= ȳ + z − xyx−1 − xzx−1 = u1 + u2

β (u2) = β
(
z − xzx−1

)
= z − xzx−1 = u2

Therefore, under the map ν : G (S) → GL2 (Z) we have: α 
→
(

1 1
0 1

)
and 

β 
→
(

1 0
1 1

)
. Thus, the image of G (S) contains 

〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
which 

is free and of finite index in GL2 (Z). Finally, if we denote the preimage H =

ν−1

(〈(
1 2
0 1

)
,

(
1 0
2 1

)〉)
, then H is a finite index subgroup of Aut (Φ3) that can 

be mapped onto a free group, as required. �
Let us now continue with the following definition:

Definition 4.2. We say that a group P is involved in a group Q, if it isomorphic to a 
quotient group of some subgroup of Q.

It is not difficult to see that if a finite group P is involved in a profinite group Q, than 
it is involved in a finite quotient of Q. Now, we showed that Aut (Φ3) has a finite index 
subgroup H which can be mapped onto F2. Thus we have a map: Ĥ � F̂2, but as F̂2 is 
free, the map splits, and thus Ĥ and hence ̂Aut (Φ3), contains a copy of F̂2. Thus, any 

finite group is involved in ̂Aut (Φ3). On the other hand, we claim:

Proposition 4.3. Let P be a non-abelian finite simple group which is involved in Aut(Φ̂3). 
Then, for some prime p and some d ∈ N, P is involved in SL3

(
pd
)
, the special linear 

group over the field of order pd.

Proof. Let Fn be the free group on x1, . . . , xn. Then there is a natural injective homo-
morphism from Fn into the matrix group:{(

g 0
t 1

)
| g ∈ Fn, t ∈

n∑
i=1

Z [Fn] ti

}

defined by the map:

xi 
→
(
xi 0
ti 1

)
, 1 ≤ i ≤ n

where ti is a free basis for a right Z [Fn]-module. This is called the Magnus embedding. 
Usually, its properties are studied by Fox’s free differential calculus, but we will not need 
it here explicitly (cf. [6,25,18]).
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One can prove, by induction on its length, that for a word w ∈ Fn, under the Magnus 

embedding, w 
→
(

w 0∑n
i=1 witi 1

)
where:

w − 1 =
n∑

i=1
(xi − 1)wi. (4.1)

The identity (4.1) shows that the polynomials wi determine the word w uniquely. Thus, 
we have an injective map (which is not a homomorphism) J : End (Fn) → Mn (Z [Fn])
defined by:

α
J
→

⎛⎜⎝ α (x1)1 · · · α (xn)1
...

...
α (x1)n · · · α (xn)n

⎞⎟⎠ .

It is not difficult to check, using the identity (4.1), that the above map satisfies:

J (α ◦ β) = J (α) · α (J (β))

where by α (J (β)) we mean that α acts on every entry of J (β) separately.
Now, for m ∈ N, denote: Kn,m = Fm

n F ′
n and Zm = Z/mZ. Then, the natural maps 

Fn → Fn/Kn,m = Zn
m and Z → Zm induce a map:

πn,m : Fn →
{(

g 0
t 1

)
| g ∈ Fn, t ∈

n∑
i=1

Z [Fn] ti

}

→
{(

g 0
t 1

)
| g ∈ Zn

m, t ∈
n∑

i=1
Zm [Zn

m] ti

}
.

It is shown in [4, Proposition 2.6], that ker (πn,m) = Km
n,mK ′

n,m and hence Φn,m :=
Im (πn,m) ∼= Fn/K

m
n,mK ′

n,m. Moreover, it is proven there (Proposition 2.7) that we have 
the following equality:

Φ̂n = lim←−mΦn,m.

Observe now that for every m2|m1, ker (Φn,m1 → Φn,m2) is characteristic in Φn,m1 , 
and for every m, ker(Φ̂n → Φn,m) is characteristic in Φ̂n. Thus:

Aut(Φ̂n) = Aut(lim←−mΦn,m) = lim←−mAut (Φn,m) .

Now, observe that the identity (4.1) is also valid for the entries of the elements of Φn,m, 
and thus, every element of Φn,m is determined by its left lower coordinate. Therefore, 
as every automorphism of Φn,m can be lifted to an endomorphism of Fn, we have an 
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injective map (which is not a homomorphism) Jm : Aut (Φn,m) → Mn (Zm [Zn
m]) which 

satisfies the identity:

Jm (α ◦ β) = Jm (α) · α (Jm (β))

where the action of α on Zm [Zn
m] = Zm [Fn/Kn,m] is through the natural projection 

Φn,m
∼= Fn/K

m
n,mK ′

n,m → Fn/Kn,m
∼= Zn

m.
We denote now KA (Φn,m) = ker (Aut (Φn,m) → Aut (Φn,m/Kn,m)). Observe, that as 

KA (Φn,m) acts trivially on Φn,m/Kn,m = Zn
m, the map Jm gives us a homomorphism, 

which is also injective, as mentioned above:

Jm : KA (Φn,m) → GLn (Zm [Zn
m]) .

Now, if P is a non-abelian simple group which is involved in Aut(Φ̂3), then it 
must be involved in Aut (Φ3,m) for some m. Thus, it must be involved either in 
Aut (Φ3,m/K3,m) = GL3 (Zm) or in KA (Φ3,m) ≤ GL3

(
Zm

[
Z3
m

])
. So it must be in-

volved in GL3 (R) for some finite commutative ring R. As every finite commutative ring 
is artinian, it can be decomposed as:

R = R1 × . . .×Rl

for some local finite rings R1, . . . , Rl, so:

GL3 (R) = GL3 (R1) × . . .×GL3 (Rl)

and thus P must be involved in GL3 (R) for some local finite commutative ring R. Denote 
the unique maximal ideal of R by M � R. As R is a finite local Noetherian ring, it is 
well known that Mr = 0 for some r ∈ N.

Note now that if S, T � R for some commutative ring R, and

I + A ∈ ker (GL3 (R) → GL3 (R/S))

I + B ∈ ker (GL3 (R) → GL3 (R/T ))

when I denotes the identity element in GL3 (R), then

[I + A, I + B] ∈ ker (GL3 (R) → GL3 (R/ST )) .

Indeed, if I +C = (I + A)−1 and I +D = (I + B)−1 then, as AB = CD = AD = BC =
0 (modST ) we have:

[I + A, I + B] = (I + A) (I + B) (I + C) (I + D) =

= I + AC + A + BD + B + C + D (modST )

= I + (I + A) (I + C) − I + (I + B) (I + D) − I = I (modST ).
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With the above observation we deduce that for every k ≥ 1, the kernel of the map 
GL3

(
R/Mk+1) → GL3

(
R/Mk

)
is abelian. So, P must be involved in GL3 (R/M) =

GL3
(
pd
)

for some prime p and d ∈ N. Finally, using the fact that GL3
(
pd
)
/SL3

(
pd
)

is 
abelian, we obtain that P is involved in SL3

(
pd
)
, as required. �

Corollary 4.4. There exists a finite simple group which is not involved in Aut(Φ̂3).

Proof. By the proposition above, it is enough to show that there is a finite simple 
non-abelian group which is not involved in SL3

(
pd
)

for any prime p and d ∈ N. Now, 
by a theorem of Jordan, there exists an integer-valued function J (n) such that for every 
field F, char (F) = 0, any finite subgroup of GLn (F) contains a normal abelian subgroup 
of index at most J (n). As a corollary of this theorem, Schur proved that the same holds 
(with the same function) for any finite subgroup Q ≤ GLn (F) with char (F) = p > 0, 
provided p � |Q| (cf. [26] chapter 9). Clearly, the same holds for any group which is 
involved in such a finite group Q.

We claim that for n large enough, Alt (n) is not involved in SL3
(
pd
)

for any p and d. 
Indeed, fix two different primes q1 and q2 larger than J (3). Then, for n sufficiently large 
(e.g. n > q3

i ) the qi-sylow subgroup Si of Alt (n) is non-abelian (since Alt (n) contains 
the non-abelian qi-group of order q3

i ) and every subgroup of Si of index ≤ J (3) is equal 
to Si, so also non-abelian. If Alt (n) were involved in SL3

(
pd
)

then for at least one of 
the qi, qi �= p, a contradiction. �
Corollary 4.5. The congruence kernel C (Φ3) contains a copy of F̂ω.

Proof. The immediate conclusion of Corollary 4.4 is that Aut(Φ̂3) does not contain a 

copy of F̂2. Thus, the intersection of C (Φ3) and the copy of F̂2 in ̂Aut (Φ3) is not trivial. 
Thus, C (Φ3) contains a non-trivial normal closed subgroup N of F̂2. By Theorem 3.10 
in [17] it contains a copy of F̂ω, as required. �
5. Remarks and open problems

We end this paper with several remarks and open problems. Denote the free solv-
able group of derived length r on 2 generators by Φ2,r. By combining the results of [9, 
Theorem 1] and [14, Theorem 1.4] we have:

ker
(
Aut (Φ2,r) → Aut

(
Z2) = GL2 (Z)

)
= Inn (Φ2,r)

for every r, i.e. Out (Φ2,r) = GL2 (Z). So by the same arguments as in §3 we have:

C (Φ2,r) = ker(〈̂α, β〉 → Out(Φ̂2,r)).

As Out(Φ̂2,r+1) is mapped onto Out(Φ̂2,r), we obtain the sequence:



D.E.-C. Ben-Ezra, A. Lubotzky / Journal of Algebra 500 (2018) 171–192 187
C
(
Z2) = C (Φ2,1) ≥ C (Φ2) = C (Φ2,2) ≥ C (Φ2,3) ≥

≥ C (Φ2,4) ≥ . . . ≥ C (Φ2,r) ≥ . . . ≥ C (F2) = {e}

and a natural question is whether the inequalities are strict or not. An equivalent refor-
mulation of this question is the following: the cosets of the kernels

ker(GL2 (Z) = Out (Φ2,r) → Out (Φ2,r/K))

for characteristic finite index subgroups K ≤ Φ2,r provide a basis for a topology C (r)
on GL2 (Z), called the congruence topology with respect to Φ2,r, which is weaker (equal) 
than the profinite topology F of GL2 (Z), and stronger (equal) than the classical con-
gruence topology of GL2 (Z). The latter is equal to C (1). So, the question above is 
equivalent to the question whether these topologies are strictly weaker than F , and 
whether the topology C (r), for a given r, is strictly weaker than C (r + 1).

For example, Theorem 1.1 which states that C (F2) = {e} is equivalent to the state-
ment that the congruence topology which Out(F̂2) induces on Out (F2) = GL2 (Z) is 
equal to the profinite topology of GL2 (Z).

Considering Theorem 1.2 we deduce that C (2) � F , but with the proof we gave here 
one can not decide whether C (1) = C (2) or C (1) � C (2). Equivalently, we can not 
decide whether C

(
Z2) = C (Φ2) or C

(
Z2) � C (Φ2). But, in [4] it was shown quite 

surprisingly, that:

Theorem 5.1. C (1) = C (2), or equivalently C
(
Z2) = C (Φ2).

The proof in [4] suggested to conjecture that C (1) = C (2) = C (r) for every r. But, 
the explicit construction of a congruence subgroup we gave in §2 gives a counterexample:

Proposition 5.2. C (1) � C (r) for every r ≥ 3. Equivalently C
(
Z2) � C (Φ2,r) for every 

r ≥ 3.

Proof. Denote G =
〈(

1 2
0 1

)
,

(
1 0
2 1

)〉
≤ GL2 (Z). Then by a theorem of Reiner 

[24], for every p �= 2, G′Gp is not a congruence subgroup of GL2 (Z) in the classical 
manner, i.e. G′Gp /∈ C (1). On the other hand, applying the explicit construction given 
in Theorem 2.9, we obtain a finite index normal subgroup M � F2 such that F2/M is 
of solvability length 3 such that1:

ker (Out (F2) = GL2 (Z) → Out (F2/M)) ≤ G′Gp.

1 We remark that if one wants M to be characteristic, all we need to do, is to replace M by ⋂
σ∈Aut(F ) σ (M), and this procedure does not change the solvability length of F2/M .
2
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This shows that G′Gp is a congruence subgroup of GL2 (Z) with respect to the congruence 
topology induced by Out(Φ̂2,3). Equivalently, C (1) � C (3) or C

(
Z2) � C (Φ2,3), as 

required. �
The proposition suggests the following conjecture:

Conjecture 5.3. C (Φ2,r) � C (Φ2,r+1) for every r ≥ 2, or equivalently C (r) � C (r + 1). 
In particular, C (Φ2,r) �= {e} = C (F2) and C (r) �= F for every r.

We should remark that we do not even know to decide whether C (Φ2,r) �= {e} for 
r ≥ 3, i.e. we do not know if the congruence subgroup property holds for Φ2,r for r ≥ 3
or not. Note that our proofs of Theorems 1.2 and 1.3 claiming that Φ = Φ2 = Φ2,2 and 
Φ = Φ3 do not satisfy the CSP were based on two facts:

1. Aut (Φ) is large, and hence every finite group is involved in Âut (Φ), and
2. not every finite group is involved in Aut(Φ̂).

Now, for Φ = Φd,r, the free solvable group on d ≥ 2 generators and solvability length r, 
part 2 is valid for 1 ≤ r ≤ 2 and every d (with the same proof as for d = 3 in §4). But, 
as C (Φd,1) = {e} for every d ≥ 3, and C (Φd,2) is abelian for every d ≥ 4 (cf. [5]), part 
1 is not valid in these cases. On the other hand, for Φ = Φ2,r or Φ = Φ3,r, part 1 is still 
true for every r ≥ 2 but not part 2. In fact, we have:

Proposition 5.4. Let Φd,r be the free solvable group on d ≥ 2 generators and solvability 
length r. Then if r ≥ 3, then every finite group H is involved in Aut(Φ̂d,r).

Proof. By the same arguments of [16, 5.2], it can be deduced from Gaschutz’s Lemma 
that for every surjective homomorphism π : Φ̂d,r → Γ where Γ is finite, the homomor-
phism

Aut(Φ̂d,r) ≥
{
σ ∈ Aut(Φ̂d,r) |σ (kerπ) = kerπ

}
→ Aut (Γ)

is surjective. Thus, for proving our proposition it suffices to show that Φ̂d,r has a finite 
quotient Γ such that H is involved in Aut (Γ). Now, by Cayley’s Theorem, H is a sub-
group of Sym (n− 1) for some n and the later is a subgroup of SLn (p) for every prime p. 
Thus, the next lemma due to Robert Guralnick, finishes the proof of the proposition. �
Lemma 5.5. For every n ≥ 2, there exists a prime p and a finite group Γ generated by 
two elements and of solvability length three, such that SLn (p) is involved in Aut(Γ).

Proof. Fix a prime r such that r > n + 1. Using Dirichlet’s Theorem, pick a prime p
such that r divides p − 1. Consider now the general affine group:
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Δ = AGL1 (r) =
{(

a 0
b 1

)
| a ∈ F∗

r , b ∈ Fr

}
= Fr � F∗

r .

Then Δ is of order r (r − 1). In addition, as r| (p− 1), Fp contains the unit roots of order 
r, fix one of them ξ �= 1, and consider the diagonal matrix:

D =

⎛⎜⎝ ξ · · · 0
...

. . .
...

0 · · · ξr−1

⎞⎟⎠ ∈ GLr−1 (p) .

Now, we can embed Δ in GLr−1 (p) by sending an element b ∈ {0, . . . , r − 1} = Fr to the 
diagonal matrix Db (giving rise to a subgroup N =

{
Db | b ∈ Fr

}
) and an element a ∈ F∗

r

to the permutation matrix which normalizes N , sending Db to Dba. So Δ has a module 
V of dimension r − 1 over Fp. Now, every Δ-submodule of V is also N -submodule. The 
N -submodules are direct sums of different one dimensional N -modules, the eigen-spaces 
of D1, on which F∗

r acts transitively. We deduce that V is an irreducible module.
Denote now W = ⊕r−2

i=1V and using the obvious action of Δ on W , define: Γ = W �Δ. 
We claim that Γ is generated by two elements. By the description above, it is clear why 
Δ is generated by two element, one of them is D ∈ Fr and we denote the other one by 
S ∈ F∗

r . Let us now define

D′ = ((�e1, . . . , �er−2), D) , S′ =
(
(�0, . . . ,�0), S

)
∈ W � Δ

where {�e1, . . . , �er−1} is the standard basis of V . For a 1 ≤ j ≤ r − 1 denote η = ξj . 
Note, that for every 1 ≤ k ≤ r − 2, 1 + η + . . . + ηk = 1−ηk+1

1−η �= 0. It follows that 
D′ k =

(
(α1�e1, . . . , αr−2�er−2), Dk

)
where 0 �= αi ∈ Fp for every 1 ≤ k ≤ r−2. Now, there 

is a power Sl of S, 1 ≤ l ≤ r− 2, which sends �er−1 to �e1. We have also SlDS−l = Dr−k

for some 1 ≤ k ≤ r − 2. Thus, for some 0 �= αi ∈ Fp, we can write:

w = S′ lD′S′ −lD′ k

= ((�0, . . . ,�0), Sl)((�e1, . . . , �er−2), D)((�0, . . . ,�0), S−l)((α1�e1, . . . , αr−2�er−2), Dk)

= ((Sl(�e1), . . . , Sl(�er−2)), SlDS−l)((α1�e1, . . . , αr−2�er−2), Dk)

= (Sl(�e1) + Dr−k(α1�e1), . . . , Sl(�er−2) + Dr−k(αr−2�er−2), I) ∈ W.

Now, as Sl sends �er−1 to �e1, �e1 does not appear in any entry of w except the first one.
Observe now, that the diagonals of D0, . . . , Dr−2, considered as column vectors of 

V = Fr−1
p , form a basis for V as the matrix:⎛⎜⎜⎜⎜⎝

1 ξ · · · ξr−2

1 ξ2 · · · ξ2(r−2)

...
...

...
1 ξr−1 · · · ξ(r−1)(r−2)

⎞⎟⎟⎟⎟⎠
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is a Vandermonde matrix, and therefore invertible. Thus, there is a linear combination

C = β0D
0 + . . . + βr−2D

r−2 =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0
0 0
...

. . .
...

0 0 · · · 0

⎞⎟⎟⎟⎟⎠ , βi ∈ Fp.

Now, observe that D′ acts on W by conjugation via the action of D on V . Thus, we 
obtain an action of C on W via its action on V , in which C (w) has �0 in every entry 
except the first one. This shows, as V is irreducible, that the first copy of V in W is 
inside the group generated by D′ and S′. In a similar way, all the r − 2 copies of V are 
generated by D′ and S′, so Γ is generated by two elements.

Now, Δ × SLr−2 (p) acts on W = ⊕r−2
i=1V = V ⊗ Fr−2

p in an obvious way. Thus 
Γ = W �Δ is normal in W � (Δ × SLr−2 (p)), so SLr−2 (p) is involved in Aut (Γ), and 
so as SLn (p). �

Let us remark that while we do not know the answer to the congruence subgroup 
problem for free solvable groups on two generators and solvability rank r (unless r = 1
or 2), the situation with free nilpotent groups on two generators is easier:

Proposition 5.6. For every free nilpotent group on two generators Γ, the congruence ker-
nel contains a copy of F̂ω – the free profinite group on countable number of generators.

Proof. It is known that if Γ̂ is a pro-nilpotent group, then the kernel of the map Aut(Γ̂) →
Aut(Γ̂/Γ′) is pro-nilpotent (cf. [16], 5.3). Thus, if Γ is a free nilpotent group (of arbitrary 
class) then by similar arguments as we brought previously, there exists a finite group 
which is not involved in Aut(Γ̂). On the other hand, if Γ is free nilpotent group on 
two generators, then Aut (Γ) is large, as it can be mapped onto GL2 (Z).2 Thus, F̂2 is 
a subgroup of Âut (Γ) and C (Γ) ∩ F̂2 is non-trivial, hence contains a copy of F̂ω (cf. 
[17]). �

Our last remark is about the CSP for subgroups of automorphism groups. Considering 
the classical congruence subgroup problem, one can take G to be a subgroup of GLn (R)
where R is a commutative ring, and ask whether every finite index subgroup of G contains 
a subgroup of the form ker (G → GLn (R/I)) for some finite index ideal I � R. This 
direction of generalization of the classical CSP has been studied intensively during the 
second half of the 20th century (cf. [22,23]). One can ask for a parallel generalization 
for automorphism groups or outer atomorphism groups. I.e. let G ≤ Aut (Γ) (resp. 
G ≤ Out (Γ)), does every finite index subgroup of G contain a principal congruence 

2 In general, the kernel of the map Aut (Γ) → GL2 (Z) strictly contains Inn (Γ) (cf. [10,1]).
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subgroup of the form ker (G → Aut (Γ/M)) (resp. ker (G → Out (Γ/M))) for some finite 
index characteristic subgroup M ≤ Γ?

Now, let πg,n be the fundamental group of Sg,n, the surface of genus g with n punc-
tures, such that χ (Sg,n) = 2 −2g−n ≤ 0. Then, there is an injective map of PMod (Sg,n), 
the pure mapping class group, into Out (πg,n) (cf. [12], chapter 8). Thus, one can ask 
the CSP for PMod (Sg,n) as a subgroup of Out (πg,n). Considering the above problem, 
it is known that:

Theorem 5.7. For g = 0, 1, 2 and every n > 0, PMod (Sg,n) has the CSP.

The cases for g = 0 were proved by [11] and in [19], the cases for g = 1 were proved 
by [2], and the cases for g = 2 where proved by [7]. It can be shown that for every 
n > 0, πg,n

∼= F2g+n−1 = the free group on 2g + n − 1 generators. Thus, the above cases 
give an affirmative answer for various subgroups of the outer aoutomorphism group of 
finitely generated free groups. Though, the CSP for the full Out (Fd) where d ≥ 3 is still 
unsettled.
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